

Welcome

Duration: 90 minutes
Labs: https://tetratelabs.github.io/wasm-workshop/
Questions/chat: https://tetr8.io/wasm-chat

https://tetratelabs.github.io/wasm-workshop/
https://tetr8.io/wasm-chat

Agenda

1. Intro: What is WebAssembly (Wasm)?
2. Wasm in Envoy
3. Proxy-wasm & SDKs
4. Wasm in Istio - WasmPlugin
5. Q&A

Introduction to WebAssembly (Wasm)

WebAssembly (Wasm)

Portable binary, open standard
Isolated from the host and executed in a sandbox
environment

Virtual machine (VM)

Communicates to host via an API

Wasm in Envoy and Istio

Extending Envoy

Native C++ filters
Recompile Envoy

Lua script filters
Inline with config or in a separate file

Wasm filters
Filter in a separate module, pulled from OCI registry

Wasm in Envoy

Subset of a V8 VM
Used in Chrome and Node.js

Multi-threaded model
Main + worker threads

Threads are independent

Wasm VM = loaded .wasm
module

Proxy-Wasm ABI

ABI (Application Binary Interface) standard
Functions and callbacks: GetHttpResponseBody, SendHttpResponse,
GetSharedData, ...

Proxy agnostic APIs
Makes Wasm filters portable

Low-level

Extension types

Extension on HTTP/TCP path
Run per each worker thread

Singleton (Wasm service)
Run per Envoy instance

Proxy-Wasm and Go SDK

Proxy-Wasm SDKs

TinyGo SDK
AssemblyScript SDK
C++ SDK
Rust SDK
Zig SDK

Proxy-Wasm Go SDK

Powered by TinyGo
Supports a subset of standard Go packages

Concepts:
Contexts

Hostcall API

Entrypoint

VMContext

type VMContext interface {
 OnVMStart(vmConfigurationSize int) OnVMStartStatus
 NewPluginContext(contextID uint32) PluginContext
}

PluginContext

type PluginContext interface {
 OnPluginStart(pluginConfigurationSize int) OnPluginStartStatus
 OnPluginDone() bool

 OnQueueReady(queueID uint32)
 OnTick()

 NewTcpContext(contextID uint32) TcpContext
 NewHttpContext(contextID uint32) HttpContext
}

Hostcall API

Ways to interact with Envoy proxy
Methods for:

Reading configuration

Setting up shared queue & performing queue operations

Dispatching HTTP calls

Retrieving headers, trailers, body, ...

Entrypoint

func main() {
 proxywasm.SetVMContext(&myVMContext{})
}

type myVMContext struct { }

var _ types.VMContext = &myVMContext{}

How to get started?
DEVELOPMENT ENVIRONMENT

Code
SDK (Proxy-Wasm Go SDK)
Compiler (TinyGo)

Envoy proxy (func-e CLI)
Configuration

Lab: Minimal Wasm extension

HTTP/TCP manipulation and configuration
values

HTTP/TCP manipulation

HTTP:
GetHttp[Request|Response][Headers|Body|Trailers]

ReplaceHttp[Request|Response][Headers|Trailers]

RemoveHttp[Request|Response][Headers|Trailers]

Add[Request|Response][Header|Trailer]

TCP:
[Get|Append|Prepend|Replace][Downstream/Upstream]Data

Configuration

Plugin and VM configuration
GetVMConfiguration to retrieve vm_config.configuration

GetPluginConfiguration to retrieve config.configuration

Available during OnVMStart and OnPluginStart only

Other functionality

Sending an HTTP response (SendHttpResponse)
Making HTTP requests to clusters (DispatchHttpCall)
Getting/setting property/metadata from Envoy

Envoy implements multiple attributes that can be retrieved using this call

Lab: Configuration & headers

Sharing data

Sharing data

Store key/value pairs
SetSharedData(string, []byte, uint32) and
GetSharedData(string) : ([]byte, unint32, error)

Shared across VMs with the same vm_id

Lab: Sharing data

Using a queue

Metrics

Metrics

Counters, histograms, gauge
Define[Counter|Histogram|Gauge]Metric

Functions to increment, add, record the values

Lab: Adding metrics

Deploy and run Wasm plugins

Wasm and Istio history

Istio 1.4: no way to deploy/run Wasm plugins
Istio maintains its Envoy fork

Mixer for extensibility (auth policies & telemetry)

Inefficient

Wasm and Envoy history

Knowledge of C++ required
Building extensions with the Envoy binary

Updating all instances (not trivial)

RBAC and JWT filters are already in Envoy

Enter WebAssembly

Wasm support in Envoy started in 2018
Features included in Istio 1.5

New extensibility model using Wasm (no more Mixer)

Stats and metadata exchange as Wasm plugins

EnvoyFilter resource

ABI & C++, Rust, and AssemblyScript SDKs

EnvoyFilter resource

Very light (almost 0) abstraction over Envoy configuration
You have to understand Envoy

Loading the .wasm files was painful
Load from HTTP - fetch failures

Improvements and path to WasmPlugin

Istio 1.9: Istio agent intercepts CRD and fetches binaries
Still uses EnvoyFilters

Istio 1.12: WasmPlugin API
No need for EnvoyFilter anymore!

WasmPlugin resource

Specify workload selectors

Host Wasm binary in OCI
registry (or HTTP)

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: hello-world-wasm
 namespace: default
spec:
 selector:
 labels:
 app: hello-world
 url: oci://my-registry/tetrate/hello-world:v1
 pluginConfig:
 greeting: hello
 something: anything

Development workflow

1. Write your extension in your language
2. Build the .wasm file
3. Build the OCI image (docker build)
4. Push the OCI image (docker push)
5. Deploy WasmPlugin resource

Lab: WasmPlugin

What's next?

Image pull secrets
1st class Wasm image cache support in Istio

Questions?

Upcoming Events

Istio 0 to 60 workshops (February 17th)
PST: https://www.tetrate.io/istio-workshop-americas/

IST: https://www.tetrate.io/istio-workshop-asia-pacific/

https://www.tetrate.io/istio-workshop-americas/
https://www.tetrate.io/istio-workshop-asia-pacific/

Thank you!
RESOURCES

Tetrate Academy: https://academy.tetrate.io
Envoy & Istio Fundamentals Course

Certified Istio Administrator

Istio weekly: https://www.youtube.com/c/tetrate
Labs: https://tetratelabs.github.io/wasm-workshop/

https://academy.tetrate.io/
https://www.youtube.com/c/tetrate
https://tetratelabs.github.io/wasm-workshop/

